

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Cis-Trans Isomerism in the Complex $\text{BrMn}(\text{CO})_2\text{dppm}(\text{P(OPh})_3)$ An Electronic Spectroscopy Study

C. Díaz^a; N. Yutronic^a

^a Departamento de Química, Facultad de Ciencias Ciencias, Universidad de Chile, Santiago, Chile

To cite this Article Díaz, C. and Yutronic, N.(1992) 'Cis-Trans Isomerism in the Complex $\text{BrMn}(\text{CO})_2\text{dppm}(\text{P(OPh})_3)$ An Electronic Spectroscopy Study', Spectroscopy Letters, 25: 8, 1411 — 1420

To link to this Article: DOI: 10.1080/00387019208017873

URL: <http://dx.doi.org/10.1080/00387019208017873>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CIS-TRANS ISOMERISM IN THE COMPLEX

$\text{BrMn}(\text{CO})_2\text{dppm}\{\text{P}(\text{OPh})_3\}$ AN ELECTRONIC SPECTROSCOPY STUDY

Key Words: Electronic Absorption Spectroscopy,

Manganese-carbonyl complexes, cis-trans isomerism

C. Díaz and N. Yutronic

Departamento de Química, Facultad de Ciencias Ciencias,
Universidad de Chile, Casilla 653, Santiago, Chile

ABSTRACT

The UV-Visible absorption Spectra for the complexes cis and trans $\text{BrMn}(\text{CO})_2\text{dppm}\{\text{P}(\text{OPh})_3\}$ dppm = $\text{Ph}_2\text{PCH}_2\text{PPh}_2$ in several solvents are reported and an assignment of their bands is proposed. The cis isomer present one characteristics band in the visible region while that the trans isomer exhibits two well defined absorption bands. This spectral behavior is in agreement with early thermodynamic considerations.

INTRODUCTION

Dicarbonyl-metal complexes currently exhibit a cis-trans isomeric behavior. Chemical and electrochemical studies on complexes $M(CO)_2(diphos)_2$ $M=Cr$, Mo or W , diphos=tertiary dispiphosphines and $XMn(CO)_2(diphos)L_2$ $L=$ neutral ligands show the existence of cis and trans isomers. In general the redox-induced isomerisation of the cis-form is detected by cyclic voltammetry^{1,2}. In addition the cis and trans geometries are easily distinguished by IR-carbonyl spectroscopy the former giving rise to two bands and the latter resulting in one.

The cis and trans isomers could be also distinguished by their different color although absorption spectroscopy studies have been not performed on such types of compounds.

Here we report the electronic spectra of the cis, and trans isomer of the complex $BrMn(CO)_2dppm\{P(OPh)_3\}$ ³ and an assignment of their bands is proposed in basis of the solvent effects as well as with aid of molecular orbital calculation for similar compounds.

RESULTS AND DISCUSSION

The compound cis- $BrMn(CO)_2dppm\{P(OPh)_3\}$ exhibits an intense band around 390 nm which is not sensitive to

TABLE 1

Solvent^a Dependence On Electronic Absorption Bands
Of Cis And Trans $\text{BrMn}(\text{CO})_2$ dppm $\{\text{P}(\text{OPh})_3\}$

Solvent	ϵ^b	Cis	Trans	
Chloroform	4.8	390	412	593
Dichloromethane	8.9	395	412	527
Acetone	20.7	395	415	525
Nitromethane	35.9	390	410	525
Dimethylformamide	36.1	395	411	528
Acetonitrile	37.5	390	409	528
Propane-1,2-diol carbonate	69.0	390	415	525

a. at room temperature

b. dielectric constant values from ref. 9

the solvent and responsible of their yellow colour. The spectrum is shown in figure 1 and the $\max(\epsilon)$ values in chloroform are: 255 (13.000), 275 (9207); 390 (1383). Solvent effect data are display in table 1. On the other hand their trans isomer shows two well defined bands in the visible region as shows figure 1. These absorption bands are not sensitive to the solvent as can be viewed from table 1. The absorption at c.a. 529 nm explains the

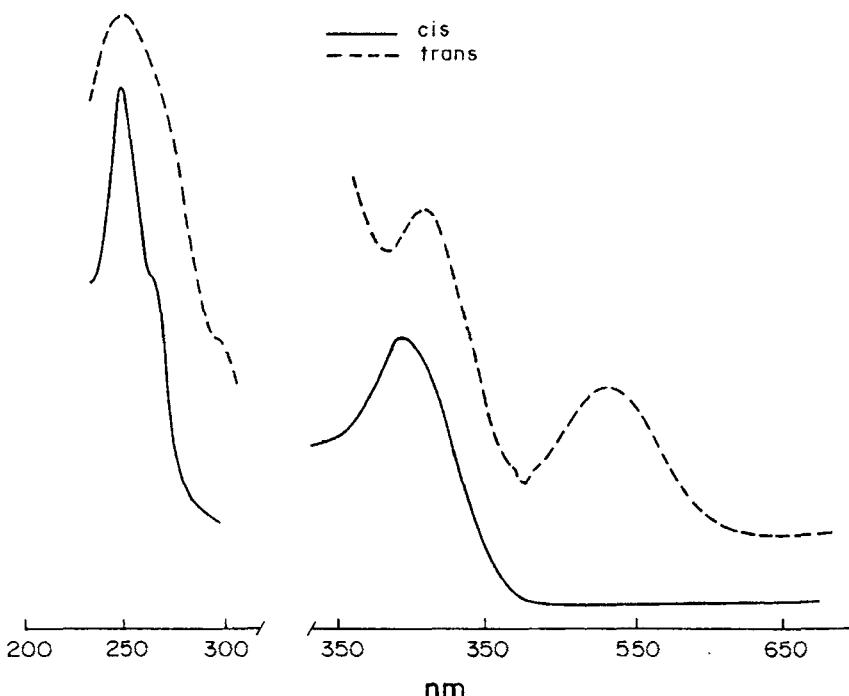


FIGURE 1.- Ultraviolet-visible absorption spectra of the complexes $\text{BrMn}(\text{CO})_2\text{dppm}(\text{P}(\text{OPh}))_3$. CIS(—) AND TRANS(....) IN CHCl_3 AT ROOM TEMPERATURE.

red colour of the trans-isomer. The $\text{max}(\epsilon)$ values in chloroform are: 265 (6017), 300 (3809), 412 (916) and 593 (81).

The non-solvent effect⁴ and the low extinction coefficient values for the absorption bands of cis and trans isomers of $\text{BrMn}(\text{CO})_2\text{dppm} \{(\text{P}(\text{OPh}))_3\}$ suggest the d-d character of these transitions. Assignments can be

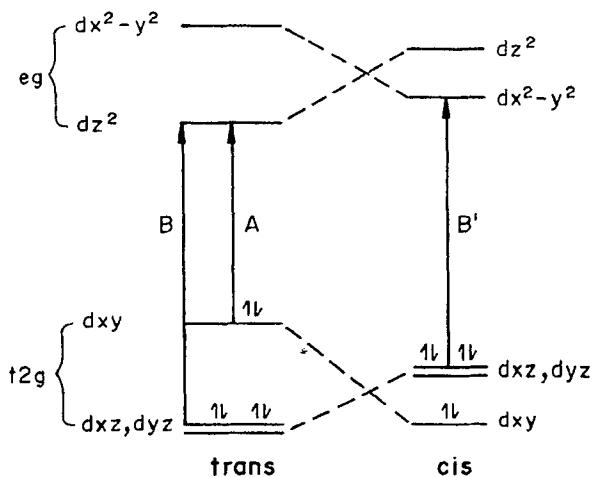


FIGURE 2.- MOLECULAR ORBITAL DIAGRAM FOR CIS AND TRANS
 $\text{BrMn}(\text{CO})_2 \text{dppm}(\text{P(OPh})_3)$

made with aid of the molecular orbital diagram shown, figure 2, which was adapted from molecular orbital calculations performed on cis and trans $\text{M}(\text{CO})_2\text{L}_4$ complexes⁵. Although the actual symmetry of the $\text{BrMn}(\text{CO})_2$ dppm $\{\text{P(OPh})_3\}$ complexes could be lower than those of $\text{M}(\text{CO})_2\text{L}_4$ complexes⁵, the primary change that could be expected is some splitting of the t_{2g} orbitals by lowering of the symmetry of the complex⁶. In this diagram the molecular orbital have been labelled according to the predominant metal d character and derived from the t_{2g} and eg set of the parent octahedron. The arrows represents the observed transitions.

For the trans-BrMn(CO)₂dppm{P(OPh)₃} complex the lowest absorption band can be assigned to a metal centered d_{xy} —→ d_{z²} transition (transition A in figure 2) . The next lowest energy absorption band observed at c.a. 410 nm can be attributed to a d_{xz}, d_{yz} —→ d_{z²} transition (B in figure 2). In the cis isomer the lowest absorption band occurs at higher energy than the trans isomer which can be explained by the decreasing of the HOMO energy in going from the trans to the cis isomer (transition B' in figure 2). This argument has been also used for explain the thermodynamically preferred cis isomer⁵. The next another possible d-d band of the cis isomer (d_{xy} —→ d_{x²-y²} in the scheme) can overlap with the first observed band which in fact is some broad (see figure 1).

The absorption behavior for the two isomer in the 300-200 nm region is very similar as can be viewed from figure 1. For both the spectra is dominated by a strong absorption band around 260 nm and a shoulder in the low-energy flank of this band.

The very high energy, high intensity band can be attributed to a predominantly Metal —→ n* CO charge transfer transition in basis of their position and intensity values. Thus, intense Mn —→ n* CO charge transfer bands at about 230 nm have been observed for manganese-carbonyl complexes⁷. Absorptions due to

transition of the phenyl groups of the diphenylphosphine methane and triphenyl-phosphite ligands can also be involved in this band although they are less intense⁸.

The 275 nm and 300 nm shoulders observed for the cis and trans isomer respectively are probably due to a transition both Metal \longrightarrow $\pi^* CO$ and d-d in character.

EXPERIMENTAL

Cis and trans $BrMn(CO)_2dppm\{P(OPh)_3\}$ were prepared as previously described³. The solvents used were spectrophotometric or gold label grade (Aldrich) or Flucka and were purified according standard procedure.

UV-Visile absorption spectra were recorded with a Cary 17 and Variant DMS-90 spectrophotometers in 1 cm lenght cuvettes.

ACKNOWLEDGEMENTS

We wish to thank to Dr. V. Riera and G.A. Carriedo where part of the experimental work was performed. Financial support received by Departamento Técnico de Investigación (DTI), Universidad de Chile, and FONDECYT is gratefully acknowledged.

REFERENCES

1. Bond A.M., Colton R. and Jackowski J.J. "Characterization and Electrochemical Behavior of group VI Dicarbonyl bis (diphenylphosphino) methane complexes". *Inorg. Chem.* 1975, 14, 274.
2. Connelly N.G., Hassard K.A., Dunne B.J., Orpen A.G., Raven S.I., Carriedo G.A. and Riera V. "The Oxidative Isomerization of *cis*, *cis*-Dicarbonylmanganese (I) Derivatives". *J. Chem. Soc. Dalton Trans.* (1988) 1623.
3. Bombin F., Carriedo G.A., Miguel J.A. and Riera V. "Synthesis of Cationic Tri-and Di-carbonyl Complexes of Manganese (I) with Diphosphines from the Appropriate Neutral Bromocarbonyls". *J. Chem. Soc. Dalton* 1989, 2049.
4. The Non-Solvent Effect on d-d band is a typical behavior of this Type of Transitions p.e.: C. Diaz and N. Yutronic. "Identification of a Lowest Excited State in the $\text{Cr}(\text{CO})_5\text{PBu}_3$ Complex". *Polyhedron* (1989), 8, 1099.

5. Mingos D.M.P.
"The Electronic Factors Governing the Relative Stabilities of Geometric Isomers of Octahedral Complexes with π -Acceptor and π -Donor Ligands". *J. Organomet. Chem.* 1979, 179, C29.
6. Kubacec P. and Hoffmann R.
"Deformations from Octahedral Geometry in d^4 Transition-Metal Complexes". *J. Am. Chem. Soc.* 1981, 103, 4320.
7. Wrighton M.S., Morse D.L., Gray H.B. and Ottesen D.K.
"Interpretation of the Electronic Spectra of Low-Spin $d^6M(CO)_5X$ Complexes. Primary Excited State Decay Paths in $Re(CO)_5X$ Complexes". *J. Am. Chem. Soc.* (1976), 98, 1111.
8. Jaffe H.H. and Orchin M.
Theory and Applications of Ultraviolet Spectroscopy". New York, Wiley 1962.
9. Griffiths T.R. and Pugh D.C.
"Correlations Among Solvent Polarity Scales, Dielectric Constant and Dipole Moment and a Means to Reliable Predictions of Polarity Scale Values

from Current Data". Coord. Chem. Rev. 1979, 29,
129.

Date Received: 06/24/92
Date Accepted: 07/28/92